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Abstract 
A high fidelity system for estimating the remaining useful life 
(RUL) for Li-ion batteries for aerospace applications is 
presented. The system employs particle filtering coupled with 
outlier detection to predict RUL. Calculations of RUL are 
based on autonomous measurements of the battery state-of-
health by onboard electronics. Predictions for RUL are fed 
into a maintenance advisor which allows operators to more 
effectively plan battery removal. The RUL algorithm has been 
exercised under stressful conditions to assert robustness.  
 
Introduction 
Lightweight, high capacity, rechargeable batteries, primarily 
based on compounds of lithium, are ubiquitous in every day 
applications, replacing mature technologies such as NiCd 
(Nickel Cadmium) and NiMH (Nickel Metal Hydride) [1]. 
The aerospace industry is also undergoing the transformation 
to lithium based batteries, in a push for less weight and size. 
Aerospace batteries are required to deliver power reliably, 
have a multi-year life span, have a consistent output over their 
lifetime, and be certifiably safe.  

While most lithium based aircraft batteries require more 
support through advanced electronics  than do NiCd and SLA 
(sealed lead acid) equivalents, lithium chemistries are still of 
considerably greater energy density than traditional 
technologies. The integrated electronics handle many 
functions including charging, battery energy control, built-in 
testing, disconnects, and monitoring. Although these functions 
provide operational benefits, another electronic capability that 
is directed specifically towards maintenance and logistics 
optimization, is the prognostic health management (PHM) 
function. Securaplane, a Meggitt company, has been a leading 
supplier of SLA systems to airframers for decades, and is now 
developing and supplying advanced Li-Ion battery systems 
([2][3]). Among many advanced features, these systems have 
integrated battery PHM capabilities as well. These comprise of 
a combination of algorithms with active electronics which 
autonomously calculate state of health (SOH), a measure of 
capacity in amp-hours as a percentage of rated capacity, the 
state of charge (SOC), and now, remaining useful life (RUL). 
The system, utilizing integration of data collection, 
processing, storage and reporting integrates high density 

energy storage and battery chemistry management into a 
single embedded package. 

By additionally integrating the ability to send monitored data 
to the aircraft data systems, which can then be off-boarded for 
immediate processing, these battery systems enable redundant 
and sophisticated processing for both remaining useful life 
(RUL) predictions as well as near real-time stress level 
assessments. 

The traditional method for maintaining batteries is primarily 
schedule-based, i.e. given certain hours of operation the 
batteries are pulled from service and tested to ensure sufficient 
capacity to support emergency electrical loading situations. In 
addition, the aircraft systems have a charge estimation system 
that indicates to the crew an indirect representation of the 
battery capacity in the form of pack voltage.  

While capacity testing has been used as a method for RUL it is 
essentially crude and not fine enough, consequently leading to 
either more maintenance than required as precautionary 
practice or more gate delays due to insufficient battery 
capacity when least desired. A true, high fidelity RUL 
determination, autonomously communicating to the 
maintenance system has not been available. Such a feature 
would allow unscheduled removals to become scheduled 
removals. Further, maintenance removals would significantly 
diminish.  

Another key element of battery PHM is the estimation of 
battery state of charge (SOC) which was discussed in a recent 
paper [4]. Along with the RUL estimator presented here, these 
will form a more comprehensive PHM suite for Securaplane 
battery systems.  

In this paper, a method for calculating a robust RUL using 
system parameters already available within the Securaplane 
lithium battery system design combined with advanced 
algorithmic filters is presented.  

Particle Filters 
Battery health monitoring has been a subject of interest for 
more than a decade [5], and since its inception much work has 
been done to predict a battery's SOC, SOH, and RUL [6][7] . 
Investigators have used data-driven [8] and analytical models 
to predict RUL, but few, if any have proven them to be easily 
implemented for online use. Any chosen method to predict 
RUL under live battery operation should incorporate an aging 
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model, because batteries lose capacity even when not in use, 
but be augmentable by measurements to account for effects of 
usage. The prediction method should also be robust to 
measurement noise, since measurements contain error, and 
easily handle non-linearity. 

A number of algorithmic methods were considered, but a trade 
study by the authors indicated particle filters (PF) to be a 
superior selection in making RUL prediction in batteries. This 
is primarily due to simplicity of the methodology and its 
robustness. The trade study considered other algorithms 
including the extended Kalman filter, the unscented Kalman 
filter, autoregressive integrated moving average estimate, 
artificial neural networks, and polynomial regression. We 
considered the algorithms’ strength in such categories as long-
term and short-term stability, computational expense, 
robustness to non-Gaussian models, the ability to make 
“global” approximations, and the incorporation of an aging 
model. 

A PF is a Monte Carlo simulation that implements a recursive 
Bayesian filter. It uses random distributions of particles to 
sample a range over which a measurement may occur. In order 
to predict forward, a posterior density function is represented 
by a set of random particles with associated weights. Particles 
are progressed according to a state space model, which can be 
nonlinear. The initial state and noise distributions can take any 
form required. Particle weights at each time step are assigned 
by comparison to measurements, with higher weights 
implying more contribution to the estimate. Only heavily 
weighted particles, above a certain threshold, are progressed 
forward.  

By adjusting the spread uniformity and noise in the 
redistribution of particles, the filter reacts more or less readily 
to measurement data at the next time step. The Securaplane 
filter is tuned such that the mean value of all the particles is 
used for the filter’s prediction value at each step. In the 
absence of measurement data, the filter predicts future values 
by propagating weighted particles forward in time. 
Consequently, extrapolation is used to find a battery’s end-of-
life (EOL) date. Without prediction correction via 
measurements, the prognostic predictions progress almost 
linearly. A generic PF technique for prediction is shown in 
Figure 1, which is quite generic based on particle filter 
literature.  

Practical Application 
For battery systems, an assumption of future usage is required 
to increase accuracy of the RUL estimate. Securaplane lithium 
batteries collect significant amounts of data throughout the 
operating life of the battery. Such data is processed through 
and introduced to the RUL algorithm as means for influence 
including weighting for recent usage parameters.  
Consequently, future usage is estimated to align with past 
usage and adjusts the PF extrapolation.  

Other variables that affect the RUL are added to the algorithm 
including the natural aging of the lithium battery cells 
independent of use and cell service history. 

 

 
Figure 1. General operation of a particle filter 

The novel aspect of this work is that it combines the 
development of a unique RUL estimator with a maintenance 
advisor for battery systems called the Li-ion Maintenance 
Advisor (LiMA). This principle uses a periodic measurement 
of state of health to develop the RUL estimate. The inputs and 
outputs of the LiMA are shown in Figure 2. Once the RUL 
estimate is available, the LiMA uses the estimate, along with a 
conservative estimate of future operating conditions, to 
develop an advisory. This is an estimate that takes into 
consideration both the calculated RUL as well as approved 
maintenance practice to ensure that the battery can be safely 
dispatched for flight, or removed for maintenance. Details of 
the overall system will be presented in a future paper.  

. 
Figure 2: The Li-ion maintenance advisor (LiMA) 

A new RUL prediction can be made upon each new entry of 
SOH. SOH is calculated at a dynamic frequency per a specific 
algorithm, using real-time impedance measurements, within 
Securaplane lithium batteries. Upon the completion of an SOH 
measurement, the RUL algorithm automatically begins 
execution using the updated SOH dataset. 

Outlier Removal 
 As with any interpolation or extrapolation algorithm a certain 
amount of error in SOH measurements will exist. However, 
with the non-linear nature of battery aging and the sensitivity 
to certain variables such as temperature, either non-
convergence or boundary extrapolation results may occur.   
Consequently, rare, erroneous SOH calculations generated by 
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the SOH algorithm need to be mitigated within the immediate 
and downstream algorithms. To remove inaccurate influence 
on the RUL’s particle filters, prediction, an outlier filter is 
used at strategic times during within the RUL algorithm. The 
outlier filter uses a moving window to sort out potential 
inaccurate data points. Exclusion bounds are a function of the 
local median and data scatter and are dynamically calculated. 
Figure 3 shows an example of outlier identification. Data 
points determined as outliers are eliminated from the data set 
used within the PF. Consequently the accuracy of the data set 
processed within the RUL particle filter algorithm is 
significantly amplified.  

 
Figure 3. Noisy data filtered by outlier filter. 

Robust Design  
The random nature of consecutive runs of a PF creates some 
variation within output predictions. Robustness in prediction is 
garnered through an added algorithm that effectively reduces 
the weight of outlying RUL predictions which balances 
confidence with computation time. 

When successive RUL values are gathered by iteration, a 
supplementary outlier filter is used to further refine the RUL, 
converging on a final value for submittal to the crew or 
maintenance computer. 

Maintenance Directives 
The maintenance advice the LiMA provides may be used to 
pre-order parts or schedule service, thereby reducing the cost 
and severity of maintenance actions taken. For example, if the 
RUL can be tracked, the operator of the aircraft can order a 
replacement battery well in advance and still be assured that a 
part will be available to dispatch the aircraft. A spare does not 
have to be stocked in inventory in anticipation of a failure, nor 
does it have to be rushed to repair due to an unscheduled 
removal. This “just-in-time” practice can lead to substantial 
savings in the MRO supply chain. 

Additionally, RUL calculations are automatically used to warn 
the operator when the most recently predicted RUL drops 
below a certain threshold.  

Algorithm Test Results 
The Securaplane RUL algorithm was tested by displaying its 
predictive response to a variety of data sets, both normal and 
under stressed situations including sudden cell short circuit 

failure. SOH data was gathered on actual cells during 
repetitive cycling within field conditions but artificially 
adjusted and normalized to mimic usage by an operator. 
Figure 4 represents one application specific usage under 
higher stress than typical.  

 

 
Figure 4.  SOH data that may be typical throughout the lifespan of a battery. 
The prediction shown by the black curve represents just one run of the PF. 

The first RUL stress test assumes that the operator used the 
Securaplane lithium battery in a manner such that the battery 
system was unable to calculate the SOH for months. This is 
actually extremely remote conditions yet useful for RUL 
algorithm “pressure test”.  Figure 5 shows the PF spans gaps 
in data and adequately responds to any available data by 
correcting its slope. 

 
Figure 5. Test for large gaps in SOH measurements. 

A fast slope change in SOH data was simulated next. Figure 6 
shows an environment where a sudden SOH change resulting 
in a steep change in environmental conditions, such as a 
battery suddenly transferred from a cooler environment to an 
extreme desert environment operation. The slope of the 
predictions does not appear to change, but the algorithm 
adjusts to new conditions, reporting decreased RUL. Notice 
how the outlier exclusion bands in Figure 6 widen upon the 
sudden slope change in SOH. 
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Figure 6.  Test for quick decline in SOH near EOL. 

 As with any battery system a cell can fail due to dendrites or 
factory assembly parasites. Figure 7 simulates a sudden short 
circuit failure of a cell within an eight cell battery string 
system. This failure causes a step change in SOH. The outlier 
filter categorizes the tails of the data surrounding the jump as 
outliers yet quickly corrects for the RUL calculations. This is 
not ideal, however adjusting the limits of the outlier filter 
would diminish the filter’s potential to detect outliers in other 
scenarios. 

 
Figure 7.  Test for cell module failure. 

Throughout the life of the battery, RUL predictions will 
change as SOH measurements hone in on EOL. Expectedly, 
additional measurement information better guides the 
prediction, but it is instructive to test the variance of 
predictions to the most reliable prediction for RUL, namely 
the prediction furthest along in life. Using truncated forms of 
the data set presented in Figure 4, we simulate RUL 
measurements taken throughout a battery’s life. For example, 
using SOH measurements up to day 204, the RUL algorithm 
predicts the EOL to take place on day 1240. On day 1000, the 
EOL is predicted to be day 1547. Figure 8 plots the 
normalized useful life predictions E = (ULfinal – UL)/ULfinal, 
taken about every 200 days, indicating the variance of each 
prediction to the last prediction. The last prediction calculated 
was done on day 1436, which gave a total useful life ULfinal = 
1648 days. This equates to a RUL = 1648 – 1436 = 212 days. 
Generally, one would expect E to decrease toward EOL, 
however some variance of slope in E is seen due to the non-
linearity of the data in Figure 4. 

 
Figure 8.  Normalized useful life predictions throughout a battery’s life. 

 
Conclusions 
Recent studies have shown particle filters to be a good choice 
for live, online predictions of a lithium battery’s remaining 
useful life. However, a particle filter by itself results in lower 
fidelity and occasionally undesirable RUL extrapolations.  
Coupling the particle filter with other specialty filters and 
extrapolation modifiers results in excellent fidelity and 
robustness properties for the algorithm. Predictions of remain-
ing useful life even under stressful fringe conditions are 
accounted for. This allows operators to more adequately 
prepare for battery service, leading to savings in the MRO 
supply chain and gate delay penalties. 

Future Work 
RUL information is integrated into the LiMA in a heuristic 
way to calculate what action to take at the next service stop. 
The details of this directive algorithm are still under 
development and will be shared in a subsequent paper. 

Additional heuristic rules are associated with the RUL 
calculation, particularly during the infancy of the battery 
system when SOH actually rises during the first few cycles, 
but these too are not germane to this paper and will be 
presented at a later time.  
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Definitions/Abbreviations 
ATP 
EOL 
LiMA 
MRO 

Acceptance test procedure 
End of life 
Li-ion Maintenance Advisor 
Maintenance, repair, and operations 

RUL 
SOC 

Remaining useful life 
State of charge 

SOH 
UL 

State of health 
Useful life 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 


